Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — математика ЦЭ
Вариант № 4278
1.  
i

Ре­ши­те не­ра­вен­ство | минус x|\geqslant5.

1) x при­над­ле­жит левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка
3) x при­над­ле­жит левая квад­рат­ная скоб­ка минус 5;5 пра­вая квад­рат­ная скоб­ка
4) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5) x_1= минус 5, x_2=5
2.  
i

Опре­де­ли­те, на сколь­ко не­из­вест­ное сла­га­е­мое мень­ше суммы, если из­вест­но, что x + 20  =  80.

1) 80
2) 20
3) 60
4) 40
5) 100
3.  
i

Зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию 7 98 минус ло­га­рифм по ос­но­ва­нию 7 8 плюс ло­га­рифм по ос­но­ва­нию целая часть: 7, дроб­ная часть: чис­ли­тель: 4, зна­ме­на­тель: 7 равно:

1) 1
2) 2
3)  ло­га­рифм по ос­но­ва­нию 7 2
4) 0
5) 3
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 4 в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка .

1)  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 12 конец ар­гу­мен­та
2) 7
3) 12
4) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
5)  ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та
5.  
i

Среди чисел −1; −2; −3; −5; −10 ука­жи­те то, ко­то­рое яв­ля­ет­ся ре­ше­ни­ем не­ра­вен­ства  дробь: чис­ли­тель: 3, зна­ме­на­тель: x плюс 2 конец дроби боль­ше или равно 0.

1) −1
2) −2
3) −3
4) −5
5) −10
6.  
i

Най­ди­те наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  синус 2x= дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби .

1)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби
2)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби
3)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби
4)  дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби
5)  дробь: чис­ли­тель: Пи , зна­ме­на­тель: 8 конец дроби
7.  
i

Даны два числа. Из­вест­но, что одно из них мень­ше дру­го­го на 6. Ка­ко­му усло­вию удо­вле­тво­ря­ет мень­шее число x, если его удво­ен­ный квад­рат не боль­ше суммы квад­ра­тов этих чисел?

1) x\le3
2) x\le минус 3
3) x\ge минус 3
4) x\ge3
5) x\le12
8.  
i

Све­жие фрук­ты при сушке те­ря­ют a % своей массы. Ука­жи­те вы­ра­же­ние, опре­де­ля­ю­щее массу сухих фрук­тов (в ки­ло­грам­мах), по­лу­чен­ных из 20 кг све­жих.

1)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: a конец дроби
2)  дробь: чис­ли­тель: 20 левая круг­лая скоб­ка 100 минус a пра­вая круг­лая скоб­ка , зна­ме­на­тель: 100 конец дроби
3)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: 100 минус a конец дроби
4)  дробь: чис­ли­тель: 20 левая круг­лая скоб­ка 100 плюс a пра­вая круг­лая скоб­ка , зна­ме­на­тель: 100 конец дроби
5)  дробь: чис­ли­тель: 2000, зна­ме­на­тель: 100 плюс a конец дроби
9.  
i

Опре­де­ли­те ост­ро­уголь­ный тре­уголь­ник, зная длины его сто­рон (см. табл.)

 

Тре­уголь­никДлины сто­рон

тре­уголь­ни­ка

ΔABC8 см; 15 см; 17 см
ΔMNK4 см; 5 см; 8 см
ΔBDC3 см; 4 см; 5 см
ΔFBC7 см; 8 см; 9 см
ΔCDE5 см; 11 см; 13 см
1) \triangle ABC
2) \triangle MNK
3) \triangle BDC
4) \triangle FBC
5) \triangle CDE
10.  
i

Пло­щадь пря­мо­уголь­но­го тре­уголь­ни­ка равна 2, а ра­ди­ус опи­сан­ной около него окруж­но­сти равен R. Ука­жи­те номер фор­му­лы, ко­то­рой может вы­ра­жать­ся сумма ка­те­тов a и b.

1) a плюс b= дробь: чис­ли­тель: R в квад­ра­те плюс 4, зна­ме­на­тель: R конец дроби
2) a плюс b= ко­рень из: на­ча­ло ар­гу­мен­та: R в квад­ра­те плюс 2 конец ар­гу­мен­та
3) a плюс b= 2 ко­рень из: на­ча­ло ар­гу­мен­та: R в квад­ра­те плюс 4 конец ар­гу­мен­та
4) a плюс b= дробь: чис­ли­тель: R в квад­ра­те плюс 2, зна­ме­на­тель: R конец дроби
5) a плюс b= 2 ко­рень из: на­ча­ло ар­гу­мен­та: R в квад­ра­те плюс 2 конец ар­гу­мен­та
11.  
i

Най­ди­те ко­ли­че­ство всех целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: 64x минус x в кубе , зна­ме­на­тель: 5x конец дроби боль­ше 0.

12.  
i

В окруж­ность ра­ди­у­сом 6 впи­сан тре­уголь­ник, длины двух сто­рон ко­то­ро­го равны 6 и 10. Най­ди­те длину вы­со­ты тре­уголь­ни­ка, про­ве­ден­ной к его тре­тьей сто­ро­не.

13.  
i

На диа­грам­ме по­ка­за­но ко­ли­че­ство по­се­ще­ний сайта на про­тя­же­нии не­де­ли (со втор­ни­ка по вос­кре­се­нье). Уста­но­ви­те со­от­вет­ствие между во­про­са­ми А−В и от­ве­та­ми 1−6.

ВО­ПРОС

A)  В какой день не­де­ли было на 20 по­се­ще­ний боль­ше, чем в преды­ду­щий?

Б)  В какой день не­де­ли ко­ли­че­ство по­се­ще­ний было на 35% мень­ше, чем во втор­ник?

B)  В какой день не­де­ли ко­ли­че­ство по­се­ще­ний было на 10% боль­ше, чем в преды­ду­щий?

ОТВЕТ

1)  Втор­ник

2)  Среда

3)  Чет­верг

4)  Пят­ни­ца

5)  Суб­бо­та

6)  Вос­кре­се­нье

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

14.  
i

Вы­бе­ри­те три вер­ных утвер­жде­ния, если из­вест­но, что две пер­пен­ди­ку­ляр­ные плос­ко­сти  альфа и  бета пе­ре­се­ка­ют­ся по пря­мой a и точка A при­над­ле­жит плос­ко­сти  бета (см. рис.).

1.  Любая пря­мая, про­хо­дя­щая через точку A и пе­ре­се­ка­ю­щая плос­кость  альфа , пе­ре­се­ка­ет пря­мую a.

2.  Су­ще­ству­ет един­ствен­ная пря­мая, про­хо­дя­щая через точку A и пер­пен­ди­ку­ляр­ная плос­ко­сти  альфа .

3.  Пря­мая, про­хо­дя­щая через точку A и пер­пен­ди­ку­ляр­ная плос­ко­сти  бета , пер­пен­ди­ку­ляр­на плос­ко­сти  альфа .

4.  Любая точка пря­мой a лежит в плос­ко­стях  альфа и  бета .

5.  Любая пря­мая, ле­жа­щая в плос­ко­сти  альфа и пер­пен­ди­ку­ляр­ная пря­мой a, пер­пен­ди­ку­ляр­на плос­ко­сти  бета .

6.  Любая пря­мая, пер­пен­ди­ку­ляр­ная пря­мой a, при­над­ле­жит плос­ко­сти  бета .

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.

15.  
i

Гра­дус­ная мера угла ABC равна 112°. Внут­ри угла ABC про­ве­ден луч BD, ко­то­рый делит дан­ный угол в от­но­ше­нии 1 : 7 (cм. рис.). Най­ди­те гра­дус­ную меру угла 1, если BO  — бис­сек­три­са угла DBC.

16.  
i

Най­ди­те про­из­ве­де­ние всех целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x в квад­ра­те минус 2x минус 3 пра­вая круг­лая скоб­ка \geqslant минус 1.

17.  
i

По двум пер­пен­ди­ку­ляр­ным пря­мым, ко­то­рые пе­ре­се­ка­ют­ся в точке O, дви­жут­ся две точки M1 и M2 по на­прав­ле­нию к точке O со ско­ро­стя­ми 1  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби и 2  дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби со­от­вет­ствен­но. До­стиг­нув точки O, они про­дол­жа­ют свое дви­же­ние. В пер­во­на­чаль­ный мо­мент вре­ме­ни M1O = 5 м, M2O = 20 м. Через сколь­ко се­кунд рас­сто­я­ние между точ­ка­ми M1 и M2 будет ми­ни­маль­ным?

18.  
i

Най­ди­те пе­ри­метр пра­виль­но­го ше­сти­уголь­ни­ка, мень­шая диа­го­наль ко­то­ро­го равна 10 ко­рень из 3 .

19.  
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 ко­рень из 5 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 36 ко­рень из 6 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 5 плюс ко­рень из 6 пра­вая круг­лая скоб­ка минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 30 конец ар­гу­мен­та .

20.  
i

Функ­ция y  =  f(x) опре­де­ле­на на мно­же­стве дей­стви­тель­ных чисел  R , яв­ля­ет­ся не­чет­ной, пе­ри­о­ди­че­ской с пе­ри­о­дом T  =  10 и при x при­над­ле­жит левая квад­рат­ная скоб­ка 0;5 пра­вая квад­рат­ная скоб­ка за­да­ет­ся фор­му­лой f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =3x в квад­ра­те минус 15x. Най­ди­те про­из­ве­де­ние абс­цисс точек пе­ре­се­че­ния пря­мой y  =  12 и гра­фи­ка функ­ции y  =  f(x) на про­ме­жут­ке [ −13; 7].

21.  
i

Най­ди­те про­из­ве­де­ние наи­боль­ше­го це­ло­го от­ри­ца­тель­но­го и наи­боль­ше­го це­ло­го по­ло­жи­тель­но­го ре­ше­ний не­ра­вен­ства

3 умно­жить на 16 в сте­пе­ни левая круг­лая скоб­ка \tfracx в квад­ра­те минус 29 пра­вая круг­лая скоб­ка минус 3x минус 10 умно­жить на 16 в сте­пе­ни левая круг­лая скоб­ка \tfracx в квад­ра­те минус 29 пра­вая круг­лая скоб­ка минус 6x боль­ше 8.

22.  
i

Чис­ло­вая по­сле­до­ва­тель­ность (an) за­да­на фор­му­лой n-го члена a_n=2n в квад­ра­те минус 15n. Най­ди­те наи­мень­ший член am этой по­сле­до­ва­тель­но­сти и его номер m. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния m · am.

23.  
i

В рав­но­бед­рен­ной тра­пе­ции диа­го­наль пер­пен­ди­ку­ляр­на бо­ко­вой сто­ро­не. Най­ди­те зна­че­ние вы­ра­же­ния 4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на S, где S  — пло­щадь тра­пе­ции, если боль­шее ос­но­ва­ние тра­пе­ции равно 6 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та , а один из углов тра­пе­ции равен 60°.

24.  
i

На ри­сун­ке изоб­ра­жен гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , за­дан­ной на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 12; 8 пра­вая квад­рат­ная скоб­ка . Най­ди­те про­из­ве­де­ние зна­че­ний ар­гу­мен­та, при ко­то­рых f в сте­пе­ни левая круг­лая скоб­ка \prime пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0. (Чер­ны­ми точ­ка­ми от­ме­че­ны узлы сетки, через ко­то­рые про­хо­дит гра­фик функ­ции y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка . пра­вая круг­лая скоб­ка

25.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 78, зна­ме­на­тель: Пи конец дроби умно­жить на арк­ко­си­нус левая круг­лая скоб­ка синус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка .

26.  
i

Из точки А про­ве­де­ны к окруж­но­сти ра­ди­у­сом  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби ка­са­тель­ная AB (B  — точка ка­са­ния) и се­ку­щая, про­хо­дя­щая через центр окруж­но­сти и пе­ре­се­ка­ю­щая ее в точ­ках D и C (AD < AC). Най­ди­те пло­щадь S тре­уголь­ни­ка ABC, если длина от­рез­ка AC в 3 раза боль­ше длины от­рез­ка ка­са­тель­ной. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 5S.

27.  
i

Куб впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду так, что че­ты­ре его вер­ши­ны на­хо­дят­ся на бо­ко­вых реб­рах пи­ра­ми­ды, а че­ты­ре дру­гие вер­ши­ны  — на ее ос­но­ва­нии. Длина сто­ро­ны ос­но­ва­ния пи­ра­ми­ды равна 2, вы­со­та пи­ра­ми­ды  — 6. Най­ди­те пло­щадь S по­верх­но­сти куба. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 4S.

28.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 15 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 15 конец ар­гу­мен­та =12.

29.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния x минус ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 36 конец ар­гу­мен­та = дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 6 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: 2x плюс 12 конец дроби .

30.  
i

Най­ди­те сумму всех трех­знач­ных чисел, ко­то­рые при де­ле­нии на 4 и на 6 дают в остат­ке 1, а при де­ле­нии на 9 дают в остат­ке 4.